
International Journal of Pervasive Computing and Communications
Comparison of context-aware predictive modeling approaches: Semantic place in
inferring mobile user behavior
Tapio Soikkeli

Article information:
To cite this document:
Tapio Soikkeli , (2015),"Comparison of context-aware predictive modeling approaches", International
Journal of Pervasive Computing and Communications, Vol. 11 Iss 3 pp. 323 - 346
Permanent link to this document:
http://dx.doi.org/10.1108/IJPCC-01-2015-0003

Downloaded on: 12 March 2016, At: 13:31 (PT)
References: this document contains references to 49 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 98 times since 2015*

Users who downloaded this article also downloaded:
Henry Larkin, (2015),"A framework for programmatically designing user interfaces in JavaScript",
International Journal of Pervasive Computing and Communications, Vol. 11 Iss 3 pp. 254-269 http://
dx.doi.org/10.1108/IJPCC-03-2015-0014
Usman Naeem, Rabih Bashroush, Richard Anthony, Muhammad Awais Azam, Abdel Rahman
Tawil, Sin Wee Lee, M.L. Dennis Wong, (2015),"Activities of daily life recognition using process
representation modelling to support intention analysis", International Journal of Pervasive Computing
and Communications, Vol. 11 Iss 3 pp. 347-371 http://dx.doi.org/10.1108/IJPCC-01-2015-0002
Kazuya Murao, Hayami Tobise, Tsutomu Terada, Toshiki Iso, Masahiko Tsukamoto, Tsutomu
Horikoshi, (2015),"Mobile phone user authentication with grip gestures using pressure sensors",
International Journal of Pervasive Computing and Communications, Vol. 11 Iss 3 pp. 288-301 http://
dx.doi.org/10.1108/IJPCC-03-2015-0017

Access to this document was granted through an Emerald subscription provided by emerald-
srm:302097 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald
for Authors service information about how to choose which publication to write for and submission
guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company
manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as
well as providing an extensive range of online products and additional customer resources and
services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the
Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for
digital archive preservation.

D
ow

nl
oa

de
d 

by
 O

PE
N

 U
N

IV
E

R
SI

T
E

IT
 N

E
D

E
R

L
A

N
D

 A
t 1

3:
31

 1
2 

M
ar

ch
 2

01
6 

(P
T

)

http://dx.doi.org/10.1108/IJPCC-01-2015-0003


*Related content and download information correct at time of download.

D
ow

nl
oa

de
d 

by
 O

PE
N

 U
N

IV
E

R
SI

T
E

IT
 N

E
D

E
R

L
A

N
D

 A
t 1

3:
31

 1
2 

M
ar

ch
 2

01
6 

(P
T

)



Comparison of context-aware
predictive modeling approaches

Semantic place in inferring mobile
user behavior

Tapio Soikkeli
Department of Communications and Networking, Aalto University,

Espoo, Finland

Abstract
Purpose – The aim of this paper is to empirically examine how to best incorporate such contextual
data, such as location or the semantic place of mobile users, into mobile user behavior models. Acquiring
such data has become technically easier than ever. The proper utilization of these data leads,
hypothetically, to better understanding of mobile user behavior and, consequently, to enhanced mobile
services.
Design/methodology/approach – The paper systematically compares, under multiple experimental
settings, the predictive performances of models built with three different approaches (pre-filtering,
contextual modeling and post-filtering) used for incorporating contextual data into user behavior models.
The comparisons focus on by which approach additional semantic place information can be best utilized
for making the most accurate inferences on mobile user behavior. Real-life smartphone usage data are
utilized in the analysis.
Findings – The results demonstrate that none of the considered approaches uniformly dominate the
others across all experimental settings. However, they show circumstance specific differences that need
to be aligned with practical use cases for the best performance.
Practical implications – Identifying the most suitable approaches for utilizing the semantic place
(and other contextual) data is an important practical problem for electronic service providers, whose
offerings are increasingly moving to the mobile domain and thus need to respond to the demands of
mobility.
Originality/value – The paper constitutes an initial step toward understanding and systematically
evaluating different approaches for incorporating semantic place data into modeling mobile user
behavior. Practitioners in the mobile service domain can apply the initial results and academics build
upon them with more diverse experimental settings.

Keywords User behavior, Context, Machine learning, Semantic place, User modeling

Paper type Research paper

1. Introduction
Modern connected mobile devices such as smartphones and tablets are able to generate
a constant stream of behavioral data related to their users’ mobile usage habits,
whereabouts and surroundings. It is not a surprise that actors from governments
through companies to individual people are seeking ways to leverage these data:
governments to keep order and reduce crime; companies to enhance their services to
increase profits; and individual people to seek, e.g. health and wellness improvements in
the spirit of the Quantified Self movement. A rich variety of use cases for the behavioral
and contextual information inferred from these data has emerged, context-aware mobile
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applications and services not among the least of them. Some of the more straightforward
uses include pure GPS (Global Positioning System) coordinates for maps and
navigation, whereas, in more complicated cases, contextual information-based
modeling and the usage of, e.g., predictive algorithms are required. Examples of these
include context-aware mobile recommender systems, whether they recommend apps,
services or content; faster app launching (Yan et al., 2012) or profile and battery
management based on context-aware prediction; and context-, application- and
service-specific adaptation operations (Baladron et al., 2012) for network resource
allocation. The basic idea is that by adding contextual information into the system,
the system can adapt better to the users’ needs. The envisioned benefits from this in the
mobile services domain relate to better usability, enhanced quality of experience for the
users and, at the end, increased profits for the companies.

Nowadays, collecting behavioral and contextual data is technically easier than ever.
For example, if granted permission, a smartphone application can monitor, in addition
to the app usage itself, the user’s location, cellular and WiFi connections or other nearby
devices and send these data to the service provider. Naturally, just accumulating data is
not valuable. Suitable approaches are needed to incorporate the data in proper manner
into the respective system (e.g. a smartphone application), and then make sure the
output is the desired one. Place-related contextual data, such as pure GPS location or the
semantic place, have traditionally been at the forefront when considering context-aware
mobile devices and services. The reason is that the mobile nature of the devices allows
users to use the services in different places, and, on the other hand, the devices
themselves have been equipped with location tracking sensors already for many years.
Moreover, the place and the meaning of the place for the user are regarded as important
determinants of mobile user behavior. Thus, semantic place data collection and
inference are rather explored areas (Laurila et al., 2013). Also, applying the semantic
place information to context-aware implementations has gained attention, but
individual studies have done it in more or less an ad hoc manner and in relatively narrow
use cases. Systematically examining how the additional semantic place data or the
refined information can be best incorporated into behavioral models behind the
implementations has gained less attention.

Comparing different incorporation approaches is important not only to the academic
community but also to the industry for several reasons. For some time, providers of
electronic services have tapped into the usage data (e.g. user demographics, usage
frequencies or diurnal usage patterns) of their services to provide, for example, more
personalized offerings. The services are, however, moving to the mobile domain at an
increasing pace and forcing the companies to update their traditional service offerings to
respond to the mobile nature of service usage, such as changing locations or semantic
places. Although, moving to the mobile domain is practically inevitable, the services
differ in ways and degrees needed for responding to the demands of mobility. Therefore,
investigating the strengths and weaknesses of different, e.g. semantic place data;
incorporation approaches under different circumstances; and finding the most suitable
approach is an important problem for the service providers.

In this work, we compare three different approaches to incorporate semantic place
information (refined location data) into models inferring mobile user behavior. In
addition, we examine how the models built with the approaches compare with models
without any semantic place information. The three approaches are Pre-filtering (PreF),
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Contextual modeling (CM) and Post-filtering (PoF) and have been initially introduced in
the domain of recommender systems (Adomavicius et al., 2011). The semantic places
considered are Home, Office/School, Other meaningful place and Elsewhere, and the data
utilized in the work are collected directly from smartphone users’ devices utilizing the
handset-based measurement method (Karikoski, 2012). Thus, we have two main
research questions in this work:

RQ1. How models built with semantic place-based PreF, CM and PoF approaches
compare performance-wise with each other, when inferring mobile user
behavior?

RQ2. How models built with semantic place-based PreF, CM and PoF approaches
compare performance-wise with models without semantic place information,
when inferring mobile user behavior?

In the article, we answer the research questions empirically by examining two
handset-based datasets across a range of different experimental conditions. We build
models including semantic place information with all of the three aforementioned
approaches, and models without semantic place information. We compare, then, the
predictive performance of the different types of models. The article makes the following
contributions to contextual mobile user behavior and smartphone usage studies:

• it focuses on how to technically utilize and incorporate semantic place information
to mobile user behavior models;

• applies three incorporation approaches (mentioned above) from the recommender
system domain to the mobile user behavior domain with relevant modifications;

• systematically compares the approaches under several experimental conditions;
• systematically compares the approaches to an approach that ignores semantic

place information; and
• accompanies previous studies in inferring semantic place information from

handset-based data.

The article is organized as follows. In the next chapter, we review the related work. In
Chapter 3, we formulate the problem at hand by explaining how we understand the
semantic place, and set the conceptual basis for semantic place information inference
and mobile user behavior modeling. Chapter 4 goes through our experimental setup and
Chapter 5 presents and discusses the results. Chapter 6 concludes the article.

2. Related work
Mobile end-user context is considered an important element in examining and modeling
the end users’ behavior. Thus, a relatively large and diverse body of previous research
investigating the effect of different contextual aspects on the behavior of mobile users
has emerged. Due to the technical advancements in mobile devices (i.e. the introduction
of the smartphone), the research has been able to move from the more traditional survey
questionnaire type of an approach, such as in Liang and Yeh (2011) and Xu and Yuan
(2009), into utilizing device monitoring or the so called handset-based measurements
(Karikoski, 2012). Measuring the users’ mobile usage directly from their devices enables
large-scale experiments and more objective results. Notable handset-based
measurement based studies and data collection efforts include the Reality Mining
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project described in Eagle and Pentland (2006), the Lausanne Data Collection Campaign
and the related Mobile Data Challenge (Laurila et al., 2013) and the Copenhagen
Networks Study (Stopezynski et al., 2014). Programmability of smartphones paves the
way for researchers to develop and distribute suitable data collection platforms,
including the Context-Phone (Raento et al., 2005) and more recently the Funf Framework
(Aharony et al., 2011).

These types of handset-based data collection platforms enable the collection of
diverse data highly suitable for end-user, context-related studies. One of the important
tasks has been inferring various contextual elements directly from the users’ data. The
places users visit and spend time in, and especially the meanings of these places for the
users, are considered to affect different aspects of user behavior. Thus, it is not a surprise
that a considerable effort has been put into identifying these semantic places (Bayir
et al., 2010; Huang et al., 2012; Isaacman et al., 2011; Soikkeli, 2011; Verkasalo, 2008; Zhu
et al., 2013). The methodologies vary from user participation and relatively heuristic
models to various machine learning and classification methods. From a theoretical point
of view, the inference methods and achievable accuracies are interesting, but the real
value of the inferred contextual information materializes when it is combined with some
other data or information. A direct next step is to model and predict the users’ next
places and movements based on historical data (Ashbrook and Starner, 2003; Etter et al.,
2012; Mayrhofer et al., 2003; McInerney et al., 2013). Implementations of this type of
modeling help, for example, in predicting the spread of diseases and in infrastructure
planning. Mobile services are expected to become increasingly more personalized for the
users’ unique needs, and contextual information, such as location or place, is identified
as a key enabler for this (Skillen et al., 2014). For example, personalized Help-on-Demand
services (Burns et al., 2012) utilize context-based modeling. Other areas for
implementing various context-based modeling in the mobile domain are context-aware
content delivery (Lungaro et al., 2011), fast app launching based on context-based
prediction (Yan et al., 2012), context-aware battery management (Ravi et al., 2008),
context-aware route recognition (Mazhelis et al., 2011) and context-aware mobile
recommender systems (Baltrunas et al., 2012), to name a few.

High-level paradigms for user modeling include data mining-based methods and
knowledge-based methods (Chen et al., 2014). Also, hybrid methods, such as those by
Chen et al. (2014), have been introduced. The context-aware predictive modeling
approaches considered in this article fall mainly into the paradigm of data mining-based
methods, and were first introduced in the domain of recommender systems
(Adomavicius et al., 2011). According to Adomavicius et al. (2011), pre-filtering means
that ratings data for recommendations are filtered based on some relevant context
before feeding to the recommender system. Contextual modeling means that the
additional contextual information is used inside the recommendation-generating
algorithms. Finally, post-filtering means that the recommendations are generated
traditionally without the contextual information, but then afterwards modified
according to the contextual information. Panniello et al. (2014) compares performance
differences between the approaches in the recommender system/e-commerce domain.
The author is not, however, aware of previous work systematically examining and
comparing these types of approaches in the mobile user behavior domain or with
semantic place information in any domain.
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3. Problem formulation
3.1 What is semantic place?
A person’s semantic place differs from a pure location or a general place, in that the place
or location has some distinguishable meaning for that particular person. The same
location or a general place can have different meanings for different people. For
example, a house at a particular location might be a home for one person, but a friend’s
place for another person. A restaurant might be a recreational place for one person, but
a workplace for another person. Generally, people might behave somewhat differently
depending on what kind of a semantic place they are in. We believe this assumption
applies also for mobile user behavior. For example, the set of applications used, usage
session durations, the intensity of usage or the type of content watched or downloaded
might vary depending on the semantic place of the user. Evidence of changes of this kind
in mobile user behavior has been observed by Karikoski and Soikkeli (2013), Soikkeli
et al. (2013) and Verkasalo (2008).

The semantic places we consider in this article are: Home, Office/School, Other
meaningful place and Elsewhere. As a semantic place Home is quite self-explanatory. By
Office/School, we mean the place the user works or studies in. Other meaningful refers to
a place which does not have the characteristics of a Home or an Office/School, but which
the user still considers a significant place in her life. These kinds of semantic places
might be, for example, a friend’s place, a parents’ place or a place for a hobby. In general,
Elsewhere refers to something other than a significant place for the user.

In some of the previous mobile user behavior research, semantic place is considered
as a part of the end user’s context. Several definitions of context appear in the literature
in which components such as the location of the user, the identity of the people near the
user, objects around the user, interests and emotional status of the user, date, season, the
temperature, etc. have been mentioned (Brown et al., 1997; Schilit and Theimer, 1994;
Schmidt et al., 1999). One of the most cited and well-accepted definitions of context is
provided by Dey (2001). It states that: “Context is any information that can be used to
characterize the situation of an entity”. Based on this definition, semantic place can also
be recognized as context.

3.2 Inferring semantic place information
At least two principal approaches exist for acquiring semantic place information in the
mobile domain: ask directly from the user or infer based on some other data. In the “ask
directly” approach, we enquire from the users at which semantic place they are currently
(currently meaning, e.g. just after using some application). In principle, it is possible to
push these questions directly to the users’ devices from capable enough handset-based
measurement platforms. The inference approach is indirect and requires suitable data
(preferably in the form of time-stamped logs), such as GPS coordinates, cell ID data
and/or data on surrounding WiFi beacons. The inference problem can be specified by a
model:

C � f(X1, X2, … , Xp) (1)

where the dependent variable C is the semantic place information, e.g. as in our case:
C � �Home, Office/School, Othermeaning ful place, Elsewhere�. The independent
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variables X1, X2, … , Xp are based on the additional information we are able to collect, e.g.
through the handset-based measurements.

3.3 Mobile user behavior modeling
Let us have a user base U represented by N users. Each user Ui is described by a set of
m demographic attributes Di � �Di1, Di2, … , Dim� and a set of r application sessions
ASi � �ASi1, ASi2, … , ASir�, where each application session ASij of user Ui is described
by a set of p application sessions attributes Aij � �Aij,1, Aij,2, … , Aij,p�. Finally, we have
semantic place (or other contextual) information C associated with each application
session ASij.

Table I illustrates a snapshot of the user table containing demographic,
application session and contextual information of user Ui. The user can be described
by demographic attributes, such as Di � �UserID, Gender, Age, WorkStatus�, by a
number of, say, 200 application sessions; ASi � �ASi1, ASi2, … , ASi200�, where each
application session is described by the application session attributes, such as, Aij �
�AppName, SessionDuration, PreviousApp, IdleTimeBeforePreviousApp, Timestamp�; and by
contextual information C which, in the scope of this paper, denotes the semantic place of the
user. The structure in general supports any kind, or more than one type, of contextual
information.

Now, the basic form of the model used for inferring mobile user behavior is:

Y � f(X1, X2, … , Xp) (2)

where the dependent variable Y is one of the application session attributes Aj, and the
independent variables X1, X2, … , Xp include all of the demographic attributes D and all
of the application session attributes A, except the attribute Aj, which was chosen to be
the dependent variable. The performance of the model is measured by using suitable
performance metrics. For example, the inference model can be a Naïve Bayes
classifier built on the data of k similar users U1, U2, … , Uk for the purpose of
inferring Aj “AppName” using all the demographic attributes and all application
session attributes, except Aj. Suitable performance metrics are, for example, the model’s
predictive accuracy or the Area Under ROC (Receiver Operating Characteristic) Curve
computed by using cross validation or out-of-sample data for evaluation. Models of type
(2) do not consider any semantic place information. Let us define next models into which
semantic place information is incorporated based on the PreF, CM and PoF approaches.
Let us assume that f produces an n-tuple (P(a1), P(a2), … , P(an)), i.e. an ordered instance
value set, which indicates as a probability P(ak) � pk the degree to which the instance

Table I.
Conceptual data table
of attributes used in
mobile user behavior
modeling

Users U
App

session AS
Demographic
attributes D

App session
attributes A Context C

Ui ASi1 Di1 . . . Dim Ai1,1 . . . Ai1,p . . .
Ui ASi2 Di1 . . . Dim Ai2,1 . . . Ai2,p . . .
. . . . . . . . . . . . . . . . . . . . . . . .
Ui ASir Di1 . . . Dim Air,1 . . . Air,p . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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(that is, application session) described by X belongs to class ak. a1, … , an are the possible
values of Y, that is, the possible values of the chosen Aj. Then we can have:

Y � arg max fC�b(X1, X2, … , Xp) (3a)

Y � arg max f(X1, X2, … , Xp, C) (3b)

Y � arg max [f(X1, X2, … , Xp) · wC�b] (3c)

Model (3a) represents the PreF approach in which only application sessions associated
with a particular value of the context attribute C � b are used for building the model. In
other words, the application sessions used in the model are filtered based on the
contextual information. For example, if we want to build a model for mobile user
behavior at home, then only those application sessions are considered which have
C � “Home”. In model (3b), which represents the CM approach, the contextual attribute
is considered as one of the independent variables and is used alongside the demographic
and application session attributes for inferring Y. In model (3c), which represents the
PoF approach, wC�b � (w(a1), w(a2), … , w(an)) denotes weights for a1, … , an, and it is
conditional to context attribute C � b. In this work, the weights are calculated as the
change in the probabilities of a1, … , an appearing in the application sessions having
occurred at all semantic places versus at the certain semantic place b. Additionally, if
class value a1 does not appear at all in b, then w(a1) � 0. The (·) indicates element-wise
multiplication, which modifies the original n-tuple proportional to the weights. The
modification method is rather conservative. If the original classifier f of (3c) produces
instance probabilities close to each other, then the class value appearing relatively more
often in b than in all semantic places gets chosen. More importantly, if a class value does
not appear at all in b, then it cannot be chosen. This is a combination of the two
post-filtering methods (called weight and filter) utilized by Panniello et al. (2014). An
extreme approach to post-filtering is deciding beforehand (based on some a priori
knowledge) one outcome per semantic place and then weighing the other outcomes to
zero, while f is trivial. For example, a user can decide that her ring tone should
automatically change to silent when in school and to normal otherwise. This is the
simplest method of adapting to contextual information.

4. Experimental setup
4.1 Datasets
For the experiments, we have two different mobile user datasets:

(1) a dataset of N � 20 users; and
(2) a dataset of N � 140 users.

From now on, we call the first mentioned dataset as N20 Dataset and the latter as N140
Dataset. The datasets were collected between 2010 and 2012, by using the handset-based
measurement method. More detailed information about the method can be found, in
Karikoski (2012). In short, the data were collected by using a special purpose software
platform provided by a third-party developer. The platform enables collection of a wide
variety of smartphone usage data from application usage and network cell IDs to
battery levels, for instance. The N20 Dataset includes 11,413 application sessions (per
user average: 571) from a period of two months and the N140 Dataset includes 387071
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application sessions (per user average: 2,765) from a period of one and a half years. The
users were students and staff of Aalto University, Finland.

Particularly interesting from the semantic place point of view are the cell ID data. The
cell ID data are a time-stamped sequence of the IDs of all the cell towers a user’s handset
has been connected to during the data collection period. In principle, it is known all the
time under which cell a user is. In addition to the raw cell ID data, the N20 Dataset
includes user generated ground truth data where the users have upon request (pop-up
questions sent periodically to the device) stated under which semantic place they are
(Home, Office/School, Other meaningful place or Elsewhere) at a particular time. By
combining, time-wise, the cell ID and the ground truth data, we can map the real
semantic place classes to the cell IDs.

In the case of the N140 Dataset, we do not have the ground truth data and thus it
needs to be inferred. For every user, we can calculate how much time the user has spent
under a particular cell. Our hypothesis is that the time-spending behavior of a user can
be used for classifying the semantic places. For example, if a lot of nighttime is spent at
a particular place (under a particular cell), it might be considered Home. If the majority
of regular working hours are spent at a particular place, it might be considered Office/
School. In reference to equation (1), Table II shows the dependent variable C which takes
as values the semantic places, and the independent variables X, which are essentially
descriptions of a user’s time-spending behavior in a place indicated by a cell ID, and used
to classify cell IDs as one of the semantic places. In the case of the N20 Dataset, we do not
need to infer the contextual information indirectly, as the users have given us this
information. However, we can use this data set, by applying machine learning methods,
to teach the predictive model f from equation (1) and then utilize the model to classify the
cell IDs of the N140 Dataset.

The data used for modeling mobile user behavior are described in Tables III and IV
at the level of exact attributes and their respective values or value ranges. These data
include the demographic data collected via pre-questionnaires from the users, and
application session data collected via the handset-based measurements. The
applications used are divided into 13 application classes for the N20 Dataset and into
10 application classes for the N140 Dataset. The classes are somewhat modified from
the classes introduced by Smura et al. (2009). For the duration attributes which were
originally continuous, such as the session durations, idle times (i.e. idle time durations)
between sessions, the values are discretized into nominal values. The discretization is

Table II.
Attributes used for
inferring semantic
place data

Dependent variable C Values/range
Semantic place (N20 Dataset: from user N140
Dataset: inferred)

Home, Office/School, other meaningful
place, elsewhere

Independent variables X Values/range
Share of time spent in a place 0.0-1.0
Share of time spent in a place during weekdays 0.0-1.0 (only Monday-Friday

considered)
Share of time spent in a place during weekends 0.0-1.0 (only Saturday-Sunday

considered)
Most time spent in a place during Night (1 a.m.-9 a.m.), day (9 a.m-5 p.m.),

evening (5 p.m.-1 a.m.)
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done by using equal-frequency binning (Liu et al., 2002). The Time of day attribute
divides the day into four six-hour periods, starting from morning-day (7 a.m.-1 p.m.) and
ending to night (1 a.m.-7 a.m.).

4.2 Number of user segments
The behavioral models can be built for different units of analysis, i.e. for different user
groups. On the other end, we have the most aggregate level where all users together act
as a unit of analysis. On the opposite end, we have a single user acting as a unit of
analysis. Assuming good clustering methods and proper selection of variables for the
basis of clustering, the groups of users become more homogenous when moving from
aggregate level toward the single user level. More homogenous data can potentially lead
to more accurate predictions. However, moving from the aggregate level to the single

Table III.
Attributes used for

modeling mobile user
behavior: N20

Dataset

Demographic data D Values/range
Gender Male, Female
Age (years) 23-44
Work status Full-time, part-time, not working
Device usage Light, medium, heavy

App session data A Values/range
App class Browsing, calendar, calling, camera, contacts, games,

maps & navigation, messaging, music & audio,
photos & gallery, social_network, video

Session duration Very_short, short, intermediate, long
Previous app Browsing, calendar, calling, camera, contacts, games,

maps & navigation, messaging, music & audio,
other, photos & gallery, social_network, video

Session duration of previous app Very_short, short, intermediate, long
Idle after previous session Zero, very_short, short, intermediate, long
Idle before next session Zero, very_short, short, intermediate, long
Weekday Weekday, weekend
Time of day Morning_day, day_evening, evening, night

Table IV.
Attributes used for

modeling mobile user
behavior: N140

Dataset

Demographic data D Values/range
Device usage Light, medium, heavy

App session data A Values/range
App class Browsing, calendar, camera, clock, contacts, games,

maps & navigation, messaging, photos & gallery
Session duration Very_short, short, intermediate, long
Previous app Browsing, calendar, camera, clock, contacts, games,

maps & navigation, messaging, other, photos &
gallery

Session duration of previous app Very_short, short, intermediate, long
Idle after previous session Zero, very_short, short, intermediate, long
Idle before next session Zero, very_short, short, intermediate, long
Weekday Weekday, weekend
Time of day Morning_day, day_evening, evening, night
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user level, the models can run into data sparsity problems, i.e. there are too few data for
making accurate predictions.

The data sets are segmented four times, increasing the number of segments every
time, to examine the effect of moving from the aggregate level to the single user level.
The number of segments varies as follows:

(1) 1_Segment: One model is built for the whole dataset.
(2) 2_Segments (N20 Dataset) or 4_Segments (N140 Dataset): The dataset is

divided into two (N20 Dataset) or four (N140 Dataset) user segments and one
model is built for each segment.

(3) 4_Segments (N20 Dataset) or 14_Segments (N140 Dataset): The dataset is
divided into 4 (N20 Dataset) or 14 (N140 Dataset) user segments and one model
is built for each segment.

(4) 20_Segments (N20 Dataset) or 140_Segments (N140 Dataset): One model is
built for each individual user.

4.3 Predictive algorithms
Three different Weka (Hall et al., 2009) classifiers were used for building predictive
models:

(1) Naïve Bayes (John and Langley, 1995);
(2) Bayes Network classifier with K2 search algorithm (Bouckaert et al., 2013); and
(3) J48 (a C4.5 decision tree algorithm) (Quinlan, 1993).

These classifiers were selected partly because of their popularity and partly because of their
relatively fast computation times. The Naïve Bayes classifier operates on relatively
restrictive assumptions, but is nonetheless competitive with many state-of-the-art classifiers
(Friedman et al., 1997). More complicated Bayes Network classifiers have, less restrictive
independency assumptions. C4.5 is often considered a standard benchmark in machine
learning. Some initial testing was also done with a few other types of classifiers, including
Support Vector Machines and rule-based classifiers. The results were similar, but the
computation times much longer in comparison with the chosen classifiers.

4.4 Dependent variables
For the experiments, we have chosen five dependent variables Y. The variables, which
are the same for both the N20 Dataset and the N140 Dataset, are:

(1) Application class of the application used by the user.
(2) Duration of an application session.
(3) Idle time before the next application session, i.e. the time the user’s device remains

unused between the end of usage of current application and start of usage of the
next application.

(4) Day of week when a particular application session has occurred.
(5) Time of day a particular application session has occurred.

The chosen dependent variables are highlighted in Tables III and IV.
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4.5 Performance metrics
Two different performance metrics were used in our experiments:

(1) Predictive accuracy, which is computed as the ratio between the number of
correctly classified cases and the total number of classified cases (Fawcett, 2006).

(2) Area Under ROC (Receiver Operating Characteristic) Curve (abbreviated often
as AUC).

AUC value is equivalent to the probability that a classifier will rank a randomly chosen
positive case higher than a randomly chosen negative case (Fawcett, 2006). The
performance metrics are calculated by using cross-validation (Kohavi, 1995) for each
model.

5. Results and discussion
5.1 Semantic place inference
In this section, we describe the semantic place inference in practice and take a look at
some interesting observations along the process. As mentioned earlier, the N20 Dataset
has the ground truth semantic place data available. In the case of the N140 Dataset,
however, inference is needed. We utilize the N20 Dataset to train model (1) for the N140
Dataset. Along the process, we examine the dynamics of the inference model
performance across predictive algorithms, the longitudinal length of the input data,
individual semantic places and number of user segments through the lens of the N20
Dataset.

The ground-truth data are relatively comprehensive for Home and Office/School, as a
user does not have many of these semantic places. In the case of the Other meaningful
place, the pop-up questionnaire method might have missed some places of this kind of
the users. Thus, the Other meaningful place ground truth might be somewhat less
comprehensive. In the case of Elsewhere, the users have, in general, “tagged” only a
fraction of places that would fall under this class. In all, the users have tagged 11.5 per
cent of the places they have visited. In total, 47 per cent of these places are tagged as
Elsewhere. From the 88.5 per cent of untagged places, majority is presumably
Elsewhere-like and rarely (or only once) visited or passed by places. Only a small fraction
of time has been spent per an untagged place.

Figure 1 shows predictive accuracy and AUC results for Naïve Bayes, Bayes
Network and J48 classifier implementations of model (1). The figure also shows the
average results over all the classifiers. The idea behind the semantic place inference
method relies on regularities in the users’ time spending behavior. We hypothesize that,
over longer time periods, some of the irregularities in the users’ time-spending behavior
smooth out and thus accuracy of the semantic place classification improves. We divide
the cell ID data into twelve half-a-week-long sections that cumulatively add up to six
weeks of data. On the x-axis, e.g. three weeks of data mean that the classifier operates on
a dataset that corresponds to that of users spending three weeks under some cell IDs.
Here, six weeks of data correspond to the whole dataset we use for training the
classifiers. While training the classifiers, the places are weighed relative to the amount
of time spent, i.e. the places where the most time is spent are also the most important to
classify correctly to gain a good performance.

Both the prediction accuracy and AUC measures improve as the classifier models get
a time-wise longer period of data to operate with. The average prediction accuracy
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improves from 73 per cent (0.5 weeks of data) to 85 per cent (6 weeks of data), and the
average AUC improves from 0.70 (0.5 weeks of data) to 0.89 (6 weeks of data). The best
classifier examined here is the Naïve Bayes classifier which, with the full dataset,
achieves a prediction accuracy of 87 per cent and an AUC of 0.95.

The prediction accuracy measures shown above are the accuracies of the whole
classifications, i.e. all of the semantic places together. The prediction accuracy of a
classifier is the same as the weighted average of the true positive rate (Fawcett, 2006) of
the classes. The AUC measures shown above are the weighted averages of AUCs of
every class. Figure 2 shows the true positive rates and AUC measures of each class (i.e.
semantic place) per classifier. For these results, we utilized the whole six weeks of data.

Based on the true positive rate (TPR), Elsewhere (93 per cent average TPR) and Home
(91 per cent average TPR) seem to be the easiest semantic places to classify correctly.
The average true positive rates of Office/School and Other meaningful place are 70 and
32 per cent, respectively. Based on the AUC measure, Elsewhere (0.96 average AUC) is

Figure 1.
Accuracy (a) and
AUC (b) measures of
Naïve Bayes, Bayes
Net and J48
classifiers as a
function of the
amount of data

Figure 2.
Accuracy (a) and
AUC (b) measures of
Naïve Bayes, Bayes
Net and J48
classifiers per
semantic place
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the easiest to classify, followed closely by Office/School (0.92 average AUC) and Home
(0.89 average AUC). Other meaningful place has an average AUC of 0.82. Intuitively, the
results do not surprise. Home should be quite easy to detect based on the users’
time-spending behavior (a lot of nighttime), as well as Office/School if a user has
somewhat regular working or lecture hours during the weekdays. Elsewhere
differentiates relatively easily from the other semantic places in that the time spent in
individual Elsewhere-type of places is very limited in comparison with the more
“meaningful” places. The Other meaningful place proves to be more difficult to classify.
First, because of bigger diversity in Other meaningful-type of places even in the case of
one user and definitely across different users. Second, the quality of the ground truth
might be poorer than in the cases of, e.g. Home and Office/School.

By examining performance differences between the different classifiers in Figure 2,
we notice that the Naïve Bayes classifier outperforms the other classifiers in most of the
cases. Based on TPR, Bayes Net classifier and J48 perform quite equally. Based on AUC,
J48 falls clearly behind the Bayes Net.

The above-described results are based on the whole N20 Dataset. In other words, the
classifiers try to catch the aggregate or general time usage behavior of the users and
classify the semantic places of each user based on this general model. Even though the
time usage behavior of the users is relatively homogenous compared, for example, with
device usage, the one-model-fits-all approach has its limitations. Figure 3 shows
prediction accuracy and AUC results for a Naïve Bayes classifier across the varying
number of user segments. The segments were generated by grouping together
demographically and time usage-wise (based on, e.g. the share of time spent at Home)
similar users with the k-Means clustering method (Kanungo et al., 2002). For 1_Segment,
the result is based on 1 overall model; for 2_Segments, it is the average result of 2 models;
for 4_Segments, the average result of 4 models; and for 20_Segments, the average
results of 20 models. The results indicate that the more personalized (i.e. moving from
the aggregate level toward the individual level) the models are, the better the
performance. From 1_Segment to 20_Segments, the accuracy and AUC results rise from
87 to 98 per cent and from 0.95 to 0.99, respectively.

Figure 3.
Accuracy and AUC
measures of Naïve

Bayes classifier per
number of user

segments. Error bars
show standard

deviations of
performance between

segments
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It is logical that the more personalized models yield better results. By following one user
a period of time, one eventually gains a good insight on the patterns of place-related time
usage of the user. Only a fraction of people live their everyday lives absent any
recognizable diurnal routines, but obviously, the routines of one person might differ
considerably of the routines of another person. However, clear diurnal routines can
easily be observed also on the aggregate level. It is still common that, on average, people
sleep at night and go to work during daytime. On the societal level, e.g. commuting and
Internet traffic follow recognizable diurnal patterns. Thus, also the aggregate models
can reach acceptable performance under suitable conditions.

The goal in this section was to train a classifier model for inferring semantic place
information from the N140 Dataset for the next section. Based on the above
examination, we will use the Naïve Bayes classifier. However, despite the good average
performance of the personalized models we have to settle for the aggregate model built
from the whole N20 Dataset. A model built from the data of a single user is over-fitted for
that particular user. An aggregate model is likely to classify better the places of a
randomly chosen new user than a model tailored to some other user. It is admittedly
possible to use some similarity metric, try to find (from N20 Dataset) users similar to the
new user (from N140 Dataset) and build a classifier model from the data of the similar
users to classify the places of the new user. Collaborative filtering (Breese et al., 1998)
and user-based Nearest Neighbor (Cover and Hart, 1967) type of methods could be used
for this. We, however, leave this type of an approach for future research.

5.2 Comparison of context-aware predictive modeling approaches
The aim of this section is to experimentally examine how models built with semantic
place-based PreF equation (3a), CM equation (3b) and PoF equation (3c) approaches
compare performance-wise with each other, when inferring mobile user behavior. We
also study how these semantic place-powered models compare with models without any
semantic place information equation (2). Referring to Chapter 4, our experimental settings
include two datasets, four different numbers of user segments, three classifiers, five
dependent variables and two performance measures. For the N20 Dataset, the semantic
place information is given by the users and for the N140 Dataset, the semantic place
information is inferred as described in the previous section. Given the different experimental
settings, we end up with thousands of generated models. Showing the results of each model
here in detail is not reasonable and thus we need a more structured way of representing the
results. First, we calculate a relative performance difference measure Diff for every semantic
place-powered model against its semantic place-ignorant counterpart:

Diff �
Perfspp � Perfspi

Perfspi
(4)

where spp and spi refer to semantic place-powered and semantic place-ignorant,
respectively and Perf to a performance measure (either prediction accuracy or AUC). If
Diff is positive, the semantic place-powered model outperforms the semantic
place-ignorant, and if negative – the other way around. The range of prediction accuracy
is [0, 1] whereas the range of AUC is [0.5, 1]. The relative performance difference between
these two is, however, commensurable which enables calculating the averages over the
relative performance differences of the two performance measures. From now on, when
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we talk about Diff, we mean the average, unless otherwise noted. Second, we divide the
representation into marginal analysis and regional analysis. Marginal analysis
summarizes performance differences while varying the number of user segments,
dependent variable or semantic place separately. Regional analysis presents the
performance differences while the number of segments, dependent variable and
semantic place are varied together. This reveals (graphically) more granular
performance difference regions (cf. usage circumstances) on the three-dimensional
(number of segments, dependent variable, semantic place) space.

5.2.1 Marginal analysis. Figure 4 shows marginal analysis results for models built
with the PreF, CM and PoF approaches (N20 Dataset on the left and N140 Dataset on
the right). The dashed line on Diff � 0 level represents the semantic place-ignorant
approach. Figures 4(a and b) average Diffs over classifiers and dependent variables to
examine how the approaches compare throughout the number of user segments.
Overall, the semantic place-powered models perform slightly better than the semantic
place-ignorant models. Also, a slight trend of increasing performance difference is
observable as we move from aggregated models toward user-specific models. However,
in the majority of cases, the relatively large standard deviations undermine any strong
conclusions on the effect of the user specificity of the models. In the case of the N20
Dataset, the performances of models built with the different semantic place-powered
approaches fit inside each other’s error bars. In the case of the N140 Dataset, the PreF
approach falls behind the two others. Figures 4(c and d) average Diffs over classifiers
and number of segments to examine how the approaches compare throughout the
dependent variables. The semantic place-powered models perform better than the
semantic place-ignorant models when Day of Week or Time of Day is the dependent
variable. Otherwise, they perform equally or slightly worse. PreF falls behind the other
two approaches otherwise, except when Time of Day (and Day of Week in the N20
Dataset case) is the dependent variable.

Figures 4(e and f) average Diffs over classifiers, dependent variables and number of
segments. However, the results are separated between the semantic places. In the case of
PreF, this division comes naturally because the underlying data fed to the models are
filtered by the semantic place. In the case of the other two approaches, each classified
instance (i.e. an application session) is checked for, in which semantic place occurred,
and the performance metrics are then calculated per semantic place. Models built with
CM and PoF approaches outperform the corresponding semantic place-ignorant models
relatively consistently across the semantic places. The largest difference between the
two is observed in the case of the N20 Dataset and the Other meaningful place.
Otherwise, the outputs of the two approaches behave similarly. The PreF approach
results in worse performance, especially for the Other meaningful place, and also for
Elsewhere for the N140 Dataset. Also, the standard deviations are larger than in the
other two approaches. Overall, the standard deviations in the cases of Home and
Elsewhere are smaller than in the cases of Office/School and Other meaningful place,
indicating more consistent results across the experimental settings for the former two.

Based on the results shown in Figure 4, models built with the PoF approach are the
only ones outperforming their semantic place-ignorant counterparts consistently. The
PreF approach leads into more varying results, occasionally underperforming when
compared with the respective semantic place-ignorant approach. The CM approach lies
in between, but is overall close to the PoF approach. The three approaches have
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Figure 4.
Performance
differences between
models built with
PreF, CM and PoF
approaches. The
differences are
averaged over
classifiers,
performance
measures, dependent
variables (a, b, e, f),
number of user
segments (c, d, e, f).
Figures for N20
Dataset are on the
left (a, c, e) and N140
Dataset on the right
(b, d, f). Error bars
show standard
deviations
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somewhat different properties which might contribute to the observed differences. As
the PreF approach filters data based on the desired semantic place before classification,
it is subject to the so-called data homogeneity versus data sparsity bias (Adomavicius
et al., 2011). Semantic place specific data are more homogenous, easing the classification,
but, on the other hand, few data are available, making the classification harder. For
example, the amount data for just the Other meaningful place are relatively low, and the
mobile usage habits are not so distinguishable, that is more homogenous, compared
with the usage habits in general. On the other hand, the usage habits in Office/School are
relatively homogenous. We can measure inverse data homogeneity (i.e. heterogeneity),
e.g. with an unalikeability metric (Kader and Perry, 2007), which is a measure of
variability for nominal variables. Diffs of the PreF approach have �0.48 correlation
with unalikeability of the respective dependent variables. That is, the less variation in
the observed values of the dependent variable in the (filtered) input data, the better
performance the classifiers show. As an example, if N20 Dataset is filtered by Office/
School, unalikeability averaged over all dependent variables decreases by 31 per cent
when compared with corresponding unalikeability calculated over the whole dataset.

Models based on CM or PoF do not suffer from data sparsity nor gain from data
homogeneity at least in relative terms, since the input data for classification (and the
respective unalikeabilities) are the same as for models based on the semantic
place-ignorant approach. Consequently, the correlations of Diffs with unalikeabilities of
corresponding dependent variables are �0.045 and 0.0013 for CM and PoF, respectively.
In the case of CM, every instance is accompanied also with the semantic place
information. In principle, machine learning models benefit almost always when more
independent variables are added into the model. However, based on our results,
the benefits are not that high compared with the other two approaches. On the outset, the
PoF approach is semantic place-ignorant; however, the initial classifications are then
modified afterward based on the available semantic place information. The usefulness
of the approach lies in the quality of the modification. By utilizing insights from the data
itself and/or from domain or user provided knowledge, carefully chosen weights for
modifying the original classification can produce good results. On the other hand,
however, badly chosen weights can produce useless results.

5.2.2 Regional analysis. The relatively compact form of the marginal analysis
benefits the high-level comparison of the PreF, CM and PoF approaches at the expense
of revealing some of the more subtle aspects. For example, the good performances of the
semantic place-powered models in the cases of Day of Week and Time of Day might
be specific for certain semantic places or certain user segmentations. Figures 5-7 show
the regional analysis results for PreF, CM and PoF approaches, respectively. The stars
(*) on heatmap cells indicate statistical significance (p � 0.1) for that a particular Diff is
positive, that is, the semantic place-powered model outweighs the corresponding
semantic place-ignorant model. The corresponding semantic place-powered and
-ignorant models are built for the same units of analysis and thus the two samples are
related. The distributions of Diffs are not normal, so we use a Wilcoxon signed-rank test
(Siegel, 1956) for testing the significance.

The overall picture between the marginal and regional analyses is similar. While
inferring Day of Week or Time of Day, the semantic place-powered models outperform
their semantic place-ignorant counterparts. However, this behavior is concentrated,
especially on the Office/School semantic place and on the Other meaningful place to some
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Figure 5.
Performance
differences between
models built with
PreF approach and
their semantic
place-ignorant
counterparts

Figure 6.
Performance
differences between
models built with
CM approach and
their semantic
place-ignorant
counterparts
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degree. The results reflect the fact that the users have some recognizable diurnal
routines their time-spending behavior follows. When it comes to the other dependent
variables, the semantic place-powered models perform slightly better at Home overall,
and at Office/School in the case of App Class. Additionally, the PoF approach models
perform relatively well at Other meaningful place, especially with increasing user
specificity (higher number of segments). Some of the earlier results, Karikoski and
Soikkeli (2013) and Soikkeli et al. (2013), show that application sessions at home are
longer, but occur less frequently than in other semantic places. This might reflect in our
results in that it is easiest to infer Duration and Idle After when users are at Home. Also,
the positive App Class results of Home and Office/School might reflect the earlier results
(Soikkeli et al., 2013) which imply that some applications are more semantic place
sensitive than others.

With regional analysis, PreF reveals even more of its on/off behavior. For certain
dependent variables, it works nicely and produces significant positive Diffs, whereas for
others it performs clearly worse than the semantic place-ignorant approach. This might
be a reflection of the mentioned data homogeneity versus data sparsity tradeoff. If
semantic place-specific data homogeneity is high, the models perform well, but if the
homogeneity is comparable with the whole dataset, the lower amount of data brings
performance below Diff � 0 level. Compared with PreF, CM provides more conservative
results over the performance differences. It has less and, in absolute terms, smaller
Diff � 0 results, but also smaller Diff � 0 results. With PoF, Diff � 0 results are
practically nonexistent. However, the larger Diff � 0 results are only a few, although the
Wilcoxon signed-rank test also deems many of the smaller differences significant. PoF
increases its performance when moving toward user-specific models more than the

Figure 7.
Performance

differences between
models built with

PreF approach and
their semantic
place-ignorant

counterparts
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other two approaches. One reason for this is the post-filtering weights which can be used
to drop unnecessary (for a certain semantic place for a certain user) dependent variable
values while retaining all the valuable predictive data. For example, a user might have
used only a few app classes while in Other meaningful place. By weighing the other app
classes to zero benefits the inference.

6. Conclusions
In this article, we aimed at answering two main research questions:

RQ1. How models built with semantic place-based PreF, CM and PoF approaches
compare performance-wise with each other, when inferring mobile user
behavior?

RQ2. How models built with semantic place-based PreF, CM and PoF approaches
compare performance-wise with models without semantic place information,
when inferring mobile user behavior?

To answer the questions, we examined two handset-based datasets empirically across
different experimental settings. For one of the datasets, namely, N20 Dataset, we had
user provided semantic place information. For the other dataset, namely, N140 Dataset,
we had to infer the semantic place information. The inference process showed that a
reasonable level of accuracy in inferring the semantic places (Home, Office/School, Other
meaningful place and Elsewhere) is achievable with relatively simple methods.
Additionally, the inference accuracy increases as the time period for observing the user’s
time-spending behavior in different places is increased, and as the inference models
become more user specific (personalized for increasingly homogenous user groups).

For RQ1, we conclude, based on the empirical results, that the three different
context-aware predictive modeling approaches – PreF, CM and PoF – show
circumstance-specific differences when inferring the examined aspects of mobile user
behavior. Although, among the approaches considered, there are no clear winners that
uniformly outperform the alternatives, some approaches provide the best solutions in
certain circumstances. While inferring dependent variables such as Day of Week or
Time of Day, all of the approaches lead into increased performance, compared with
semantic place-ignorant approaches. With the other dependent variables (App Class,
Duration and Idle After), the performance increases are mostly negligible; however, the
PreF approach shows even decreased performance when compared with the semantic
place-ignorant approaches. Differences in performance are visible across the different
semantic places. PreF is relatively strong in inferring user behavior in Office/School, but
poor in Other meaningful place. The other two approaches are stronger, especially in the
case of the Other meaningful place. PreF works well if the information (semantic place in
this work) used for the filtering separates well certain types of user behavior (e.g. daily
or weekly mobile usage patterns in this work), but works poorly if the separation falls
short while the amount of data is significantly reduced by the filtering. CM is the most
conventional from the approaches examined in this work. It produces reasonable
performance improvements with the lowest amount of additional work. PoF performs
well if the actual post-filtering part for modifying the initial inferences is sound and
works well together with the additional information. Developing the best possible
modification method is an art of its own and a clear topic for future research. Future
research is also needed on alternative approaches to the three examined here, as well as,
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on possible hybrid approaches. In short, PreF offers a “high risk, high reward”
approach, and thus, cannot be applied blindly without knowing the properties of the
underlying data. CM offers a relatively reliable “safe bet” which, in general, does not fall
behind semantic place-ignorant approaches, but rather outperforms them at least
slightly. PoF has potential for the “best of breed” approach on condition that suitable a
priori knowledge is available or can be inferred for constructing the post-filtering
weights.

For RQ2, we conclude that, when generalized over all the experimental settings,
models built with the semantic place-powered approaches outperform models without
any semantic place information. However, when examining the results with finer
granularity, it becomes visible that semantic place information is able to contribute
positively only to the inference of certain aspects of mobile usage, such as when the
usage takes place, and, in some more limited cases, the app used and its usage duration
and frequency. The experimental settings used in this work are limited, but,
nonetheless, highlight the important matter of case specificity. In many context-aware
mobile applications, location and semantic place are often, by default, the first
contextual information to be added. However, the particular use case defines the
usefulness of the additional information. In many cases, some of the more personal traits
of the users dominate the mobile user behavior when compared with just being at
different semantic places. Of semantic places, home and workplace are considered the
most important as they in general set the rhythm of people’s daily life and routines and
people spend most of their time in these places. Indeed, also in this work, knowing
whether the users are at home or at the office/school proved useful in inferring certain
aspects of mobile user behavior.

The present work constitutes an initial step toward understanding and
systematically evaluating different approaches for incorporating additional semantic
place data into modeling mobile user behavior. A cost of acquiring and incorporating
any additional contextual information, such as the semantic place, always exists. Thus,
it needs to be examined whether applying the information is useful, and by which means
it is the most useful. The experimental part of the article is limited by user-wise narrow
datasets and the timeliness of the data can be questioned in the fast moving mobile
domain. However, we think that the underlying behavioral and data-related aspects the
article focuses on are not that time-sensitive. Nonetheless, further research on the
different context-aware predictive modeling approaches requires new datasets and new
aspects of mobile user behavior to work on. The strengths and weaknesses of the
approaches lie in different places, and mapping them comprehensively requires
different experimental settings. Also, a more theoretical examination is needed to
investigate the reasons behind the observed differences between the approaches.
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